SNIPER: светлое будущее кремниевой нанофотоники. Кремниевая фотоника меняет принципы построения серверов От исследований – к реализации

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

IBM объявили о прорыве в области кремниевой фотоники – была создана первая полностью интегрированная мультиплексированная микросхема. Новое устройство позволит отдельным чипам взаимодействовать между собой с помощью оптических, а не электромагнитных волн, что позволит повысить пропускную способность до 100 ГБ в секунду и выше. Эта микросхема размещается на одном кристалле кремния и имеет решающее значение для долгосрочного внедрения оптических технологий в микромасштабах. Но почему у таких мощных компаний как IBM и Intel потратили целые десятилетия на изучение кремниевой фотоники?

В теории, с помощью кремниевой фотоники можно решить многие серьезные проблемы, связанные с дальнейшим использованием медных соединителей. Одна из основных проблем медного провода в том, что его нельзя масштабировать также активно, как другие жизненно важные детали современного процессора. После определенной точки физически невозможно уменьшать медный провод дальше без ущерба для его производительности и/или срока годности. В теории, оптические соединения могут передавать данные гораздо быстрее, потребляя при этом меньше энергии. Помимо этого, многие компании считают, что кремниевая фотоника является необходимой для создания суперкомпьютеров с вычислительной мощность около одного эксафлопса (exascale computing).

К сожалению, кремний — это плохая среда для оптических приборов, так как масштабы производства настолько разняться (оптические волноводы и другие компоненты гораздо больше, чем КМОП кремния), что не существует инженерных решений, которые могли бы эффективно и недорого интегрировать оптические элементы в существующие КМОП с использованием кремния, а не дорогостоящих альтернативных материалов, таких как, например, арсенид галлия. Теперь же компания смогла разместить чипы, созданные по технологии кремниевой фотоники, прямо на модуле процессора.

График из презентации Intel о кремниевой фотоники иллюстрирует и энергопотребление, которого стараются достигнуть производители. Долгосрочные планы на кремниевую фотонику предлагают таки пропускную способность и количество энергии на бит информации, которая недоступна медным соединениям.
После десятилетий работы кремниевая фотоника может казаться лишь еще одной сумасшедшей идеей, которая хорошо выглядит на бумаге, но совершенное неприменима на практике, но прогресс не стоит на месте, и хотя передовые компании, такие как IBM, Intel или HP, могут не выпустить технологию на коммерческом уровне в ближайшее время, она наверняка найдет применения в научных лабораториях, сверхкомпьютерах и датацентрах.

Вот и наступила весна… А вместе с ней пришла пора очередного Форума Intel для разработчиков (IDF), проводимого дважды в год в солнечной Калифорнии и регулярно гостящего в других городах мира (с недавних пор - и в России). Причем, весна в данном случае пришлась не просто для красного словца - в Сан-Франциско, где IDF в очередной раз проходит с 1 по 3 марта в громадном конференц-центре Moscone West,

действительно сейчас тепло, цветут деревья и кусты, обдавая весенними ароматами, а местные жители ходят по улицам в рубашках или легких куртках, если нет дождя. На этом жизнерадостном фоне прилетев из заснеженной Москвы не так просто было бы просиживать целыми днями в конференц-залах и пресс-румах, толкаться среди нескольких тысяч посетителей и организаторов IDF на шоу-кейсах и в кулуарах. Если бы не та, порой уникальная и захватывающая информация, которая громадными порциями сваливается на тебя, не оставляя ни минуты покоя. Даже мне, регулярному посетителю центральных Форумов Intel (а также многих других выставок и конференций сходной тематики), пресытившемуся, казалось бы, подобными мероприятиями и воспринимающими их едва ли не как очередной голливудский блокбастер, добротно слепленный по давно известным клише, нередко приходится удивляться тому потоку новинок, который заготовили для участников IDF его организаторы. Удивляться и даже местами восхищаться…

Нашим постоянным читателям, наверное, уже нет нужды объяснять, что такое Intel Developer Forum и «с чем его едят». Это мероприятие, регулярно в течение многих лет проводимое корпорацией Intel и ее ближайшими друзьями по IT-цеху, имеет свои индивидуальные особенности, отличающие его как от различных компьютерных выставок (вроде CeBIT, Computex, Comdex или CES, где сотни и тысячи производителей IT-продукции хвастаются своими достижениями с целью их повыгоднее продать), так и от крупных мировых научных и технических конференций (вроде Material Research Society Meeting, IEEE и других подобных, где сотни ведущих мировых институтов и исследовательских лабораторий сообщают о новейших научных открытиях, изобретениях и технологиях, внедрением которых предстоит заниматься еще немало лет). На мой взгляд, IDF все же ближе именно к последним, чем к первым. Поскольку Intel, расходующая на Research & Development более 4 миллиардов долларов ежегодно, на IDF как раз старается продемонстрировать не столько текущие и готовые к выпуску на рынок продукты (микропроцессоры, платформы и пр.),

сколько сообщить индустрии тот вектор, в котором она будет развиваться в течение ближайших лет. Обнародовать те нынешние и будущие технологии, внедрением которых корпорация занимается вместе со своими партнерами и другими IT-разработчиками, привлечь на свою сторону новых исследователей и инженеров (то есть «девелоперов», по названию Форума), а возможно, и обсудить целесообразность тех или иных шагов в рамках всего IT-сообщества. И хотя, безусловно, «выставочно-продажная» канва на IDF в некоторой мере тоже присутствует, наиболее ценной и интересной, на мой взгляд, является именно исследовательски-технологическая его часть.

Вот и «нулевой» день нынешнего IDF, прошедший 28 февраля для ведущей прессы и аналитиков со всего мира, преподнес несколько сюрпризов, о чем я и постараюсь рассказать в этом репортаже, предваряющем рассказ о самом Форуме.

Кремниевая нанотехнология: взгляд на 20 лет вперед

В первом докладе нулевого дня речь пошла о том, какими путями может и будет развиваться кремниевая технология производства вычислительных устройств в ближайшие десятилетия. Кратко и примитивно это можно было бы назвать «оправданием закона Мура на 20 лет вперед», если бы такой банальный на первый взгляд посыл не был подкреплен захватывающими дух деталями научных исследований в области нанотехнологий и их воплощением на практике в технологии промышленного масштаба. Доклад представил Пауло Джарджини (Paulo Gargini, на фото), директор Intel Technology Strategy и Intel Nanotechnology Research.

Более чем часовая презентация проходила в очень быстром темпе, не давая ни на секунду опомниться и спокойно поразмышлять над тем или иным слайдом. Ее подробный пересказ, видимо, был бы полезен для некоторых наших вдумчивых читателей. Но он занял бы непомерно много места (это около сотни «серьезных» слайдов, к каждому из которых еще нужно добавить немало комментариев). Поэтому я отмечу лишь отдельные наиболее интересные, на мой взгляд, моменты, тем более что некоторые из присутствовавших в нем деталей я и мои коллеги уже описывали в своих статьях по результатам предыдущих IDF и недавних «технологических прорывов» Intel. Более развернуто я изложу этот материал, возможно, в другой раз.

Последние 40 лет число элементов на кремниевых кристаллах неуклонно продолжало удваиваться каждые два года, а стоимость одного транзистора на кристалле теми же темпами снижалась.

Лет 10 назад ученые предрекали большие проблемы при переходе к 100-нанометровым приборам, но, к счастью, этого не случилось, и нынче у лидеров отрасли есть хорошо изученные перспективы развития традиционной кремниевой технологии с планарными КМОП-транзисторами еще лет на 10 вперед (см. слайд).

Необходимость в принципиально новых электронных приборах возникнет лишь году к 2013-му, когда возможности миниатюризации нынешних приборов фактически будут исчерпаны.

Среди новых кремниевых приборов рассматриваются многозатворные (например, tri-gate) нанотранзисторы, приборы на основе кремниевых нанотрубок, полностью окруженные затвором, а также приборы с квазибаллистическим транспортом.

В более отдаленной перспективе рассматриваются также углеродные нанотрубки диаметром в единицы нанометров, которые, в зависимости от строения, могут выступать в качестве металла или полупроводника. Интересными для наноэлектроники являются приборы на базе гетероструктур InSb (с уникально высокой подвижностью), см. слайд.

А что же будет после 2020 года, когда КМОП-технология исчерпает возможности миниатюризации, достигнув атомарного предела?

Тогда в ход, возможно, пойдет спинтроника - оперирование магнитными моментами элементарных частиц:

Кое-кто поговаривает и о квантовых компьютерах. Пока же КМОП-технология жива и закон Мура будет действовать еще, по крайней мере, лет 15-20.

Кремниевая фотоника: новый прорыв

Другим интересным событием нулевого дня этого IDF стал доклад о , созданном на кремниевом кристалле в Intel. Строго говоря, новость об этом обошла мир за несколько дней до IDF (17 февраля вышла соответствующая статья в Nature и пресс-релиз корпорации), но здесь главные разработчики нового прибора прилюдно поделились многими доселе неизвестными деталями и продемонстрировали аудитории многочисленные кристаллы с такими лазерами. Например, на этом фото (фото автора) кристалл содержит сразу 8 таких лазеров.

Не вдаваясь в подробности, отметим, что для того, чтобы создать такой лазер на кремнии, ученым Intel пришлось решить важную проблему - так называемой «двухфотонной абсорбции», которая ранее препятствовала созданию непрерывного лазера на кремнии.

Использование кремния в качестве материала для создания лазера и для многократного усиления ИК-излучения (благодаря гигантскому, примерно в 20000 раз эффекту Рамана),

прежде было проблематично, поскольку рамановское усиление при мощной накачке выходило в насыщение, и получаемой при насыщении мощности не хватало для создания непрерывного лазера.

Дело в том, что энергии одного инфракрасного фотона (кванта света) недостаточно для того, чтобы при соударении с атомом кристаллической решетки кремния выбить из него (освободить) электрон. Однако если с атомом столкутся сразу два фотона (что нередко происходит при интенсивной накачке лазера внешним излучением), то ионизация атома становится возможной, и свободные электроны в кремнии начинают сами поглощать фотоны, препятствуя тем самым дальнейшему рамановскому усилению. Проблему удалось решить, создав вдоль оптического канала так называемую p-i-n-структуру (области кремния с дырочной и электронной проводимостью соответственно по бокам нелегированного оптического канала в кремнии, см. рисунок).

Подавая электрическое смещение между p- и n-областями кремния, «двухфотонные» свободные электроны можно эффективно удалять из области оптического канала, существенно повышая тем самым рамановское усиление в кремнии и создавая непрерывный лазер.

На базе данного решения можно создавать два важных оптических прибора прямо на едином кристалле кремния - усилитель и модулятор сигналов.

А также при помощи каскадов зеркал (расположенных прямо на кремнии) делать многоволновые оптические каналы связи и компактные лазеры для различных применений.


В руках у Mario Paniccia, директора Intel Photonic Technology Lab, кристалл нового непрерывного кремниевого лазера (справа) и традиционный дорогой рамановский оптический усилитель (слева):

Это достижение сотрудников Intel открывает новые горизонты развития кремниевой фотоники и ее дальнейшего внедрения в традиционную микроэлектронику.

Минувший 2007 год был очень успешным для развития многих технологий Intel, в том числе и в области кремниевой фотоники. Последние прорывные достижения Intel в этой сфере журнал MIT Technology Review сравнил с тройным выигрышем на скачках – так обозреватели ведущего издания оценили серию официальных анонсов корпорации. Как сообщил Джастин Раттнер (Justin Rattner), главный специалист по технологиям и глава Corporate Technology Group корпорации Intel: "Мы опытным путем продемонстрировали, что производственные технологии, совместимые с технологией разработки кремниевых CMOS-элементов, позволяют создавать полупроводниковые оптические устройства.

Доказательство этого факта стало огромным достижением, однако для дальнейшего развития данного технологического направления необходимы не менее значимые шаги. Теперь нам нужно научиться интегрировать устройства кремниевой фотоники в стандартные компоненты компьютеров; пока еще мы не умеем делать этого. Но в то же время мы продолжаем активно работать вместе с подразделениями, занимающимися разработкой различных видов продукции, чтобы предложить производителям модели использования полупроводниковой фотоники в решениях Intel".

Кремниевая фотоника как средство устранения узких мест на пути к эре тера-вычислений

Кремниевая фотоника – важнейшая составная часть долговременной стратегии развития Corporate Technology Group, направленной на ускорение перехода к тера-вычислениям. Дело в том, что по мере развития многоядерных процессоров, обладающих огромной вычислительной мощностью, перед инженерами возникают новые проблемы. Например, потребность в скорости обмена данными между памятью и процессором скоро превысит физические ограничения, накладываемые медными проводниками, а скорость передачи электрических сигналов станет меньше, чем быстродействие процессора. Уже сейчас производительность мощных вычислительных систем, зачастую, ограничивается скоростью обмена данными между процессором и памятью. Сегодняшние технологии передачи данных рассчитаны на гораздо меньшую пропускную способность по сравнению с фотоникой, а с увеличением расстояния, на которое передаются данные, скорость передачи становится еще меньше.

Испытания опытного образца оптического модуля памяти показали, что для доступа к памяти сервера может использоваться не электричество, а свет

"Необходимо привести скорость передачи данных между компонентами вычислительной платформы в соответствие с быстродействием процессоров. Это действительно очень важная задача. Мы видим кремниевую фотонику в качестве решения этой проблемы, и потому проводим в жизнь исследовательскую программу, которая позволяет нам занимать передовые позиции в этой области", - заявил заслуженный инженер-исследователь корпорации Intel Кевин Кан (Kevin Kahn).

Группа под руководством ведущего исследователя Intel в области оптики Дрю Элдуино (Drew Alduino) занимается созданием системы оптической связи между процессором и памятью для платформ Intel. Уже создана тестовая платформа на базе полностью буферизованной памяти FB-DIMM, на которой загружается и запускается Microsoft Windows. Действующий опытный образец является доказательством возможности подключения памяти к процессору с помощью оптических линий связи без ущерба для производительности системы.

Создание коммерческой версии подобного решения несет огромные преимущества для пользователей. Оптические системы связи позволят устранить узкое место, связанное с разницей в пропускной способности памяти и скоростью процессора, и повысить общую производительность вычислительной платформы.

От исследований – к реализации

В лаборатории Photonics Technology Lab, которой руководит заслуженный инженер-исследователь корпорации Intel Марио Паниччиа (Mario Paniccia), было доказано, что все компоненты для оптических коммуникаций – лазер, модулятор и демодулятор – можно изготовлять из полупроводников на базе имеющихся производственных технологий. В PTL уже были продемонстрированы важнейшие компоненты кремниевой фотоники, работающие с рекордной производительностью, включая модуляторы и демодуляторы, обеспечивающие скорость передачи данных до 40 Гбит/с.

Для реализации технологии полупроводниковой фотоники необходимы шесть основных компонентов:

  • лазер, испускающий фотоны;
  • модулятор для преобразования потока фотонов в поток информации для передачи между элементами вычислительной платформы;
  • волноводы, играющие роль "линий передачи" для доставки фотонов к местам назначения, и мультиплексоры для объединения или разделения световых сигналов;
  • корпус, особенно необходимый для создания сборочных технологий и недорогих решений, которые можно будет использовать при массовом производстве ПК;
  • демодулятор для приема потоков фотонов, несущих информацию, и их обратного - преобразования в поток электронов, доступный для обработки компьютером;
  • электронные схемы для управления этими компонентами.

Вопрос реализации всех этих компонентов оптической связи на базе полупроводниковых технологий повсеместно признан важнейшей исследовательской проблемой, решение которой приведет к огромному техническому прорыву. Лаборатория PTL уже установила ряд мировых рекордов, разработав высокопроизводительные устройства, модуляторы, усилители и демодуляторы, обеспечивающие скорость передачи данных до 40 Гбит/с. В течение следующих пяти лет корпорация Intel будет искать пути для интеграции этих компонентов в реальную продукцию.

В области полупроводниковой фотоники Intel уже вышла на финишную прямую. Исследования в области интеграции оптических элементов уже перешли от стадии научных или технологических разработок к этапу создания коммерческой продукции. Исследовательская группа теперь занимается определением возможностей и спецификаций для проектирования новаторской продукции на базе этой революционной технологии. В конечном счете специалисты Intel создают опытные образцы и тесно сотрудничают с подразделениями, занимающимися разработкой различных видов продукции, чтобы ускорить внедрение новой технологии.

Кроме собственной деятельности, корпорация Intel финансирует некоторые наиболее перспективные исследования в этом направлении вне CTG - в частности, сотрудничает с Калифорнийским университетом в Санта-Барбаре, который занимается разработкой гибридного полупроводникового лазера. В лаборатории PTL также проходят стажировку талантливые выпускники различных университетов из других стран.

Ведущий исследователь Intel в области оптики Ричард Джонс (Richard Jones) считает: "На текущую перспективу перед нами стоят две важнейшие задачи по реализации проекта гибридного полупроводникового лазера. Во-первых, мы должны перенести опытное производство гибридных лазеров из Калифорнийского университета на завод Intel. Во-вторых, нам предстоит объединить гибридный лазер, высокоскоростной полупроводниковый модулятор и мультиплексор, чтобы доказать, что мы можем создать единый оптический передатчик на базе производственной технологии, совместимой с CMOS".

Внедрение технологий кремниевой фотоники будет включать разработку новых производственных процессов для изготовления лазеров в крупносерийных масштабах. Успехи корпорации Intel в области фотоники позволят ей существенно опередить потенциальных конкурентов. Лаборатория PTL уже зарегистрировала около 150 патентов. Самые престижные издания, такие как Nature, отметили небывалые достижения специалистов Intel. Кроме того, в 2007 году корпорация Intel была удостоена награды EE Times ACE Award за самую перспективную новую технологию.

В погоне за фотонами

В отличие от имеющихся прочно устоявшихся и отработанных десятилетиями процессов производства транзисторов, технология создания элементов для полупроводниковой фотоники является полностью новой. На пути ее внедрения стоят определенные проблемы: оптимизация устройств, повышение надежности конструкции, отработка методологии испытаний, обеспечение энергоэффективности, разработка сверхминиатюрных устройств.

Чтобы новые компоненты можно было использовать на практике, специалисты PTL должны убедиться в том, что оптические компоненты удовлетворяют исключительно высоким критериям надежности, принятым в производстве вычислительной техники. В оптической промышленности строгие стандарты надежности разрабатывались десятилетиями. В соответствии с ними перед началом серийного выпуска новой продукции требуются месяцы испытаний. Если в процессе этих длительных испытаний будут выявлены проблемы, их исправление и повторное тестирование могут значительно задержать выход продукции на рынок.

Одной из важнейших проблем является оптимизация, ведь лаборатория PTL разрабатывает оптические устройства для массовой вычислительной техники. Пока нет другой подобной продукции, стандартов и других точек отсчета, инженеры, разрабатывающие новый технологический процесс, сами ищут решения, наилучшим образом удовлетворяющие потребности компьютерных применений.

В настоящее время группа исследователей лаборатории PTL, относительно небольшая по меркам фотоэлектроники, постепенно переключается на коммерциализацию решений полупроводниковой фотоники и рассчитывает, что массовое внедрение этой невероятной технологии может начаться уже в 2010 году.

Группа специалистов по оптике из подразделения Digital Enterprise Group (DEG) под руководством Виктора Крутала (Victor Krutul) занимается разработкой приложений, которые обеспечат базу для становления новой технологии. "Мы верим, что благодаря освоению оптических коммуникаций продукция Intel и дальше будет соответствовать закону Мура", - говорит Крутал.

Когда для переноса информации между компонентами одной вычислительной платформы и между разными системами будут использоваться не электроны, а фотоны, свершится очередная компьютерная революция. Ведущие производители электронной техники во всем мире уже подключились к этой гонке, стремясь получить конкурентные преимущества. Значимость новой технологии можно сравнить с изобретением интегральных схем. Специалисты корпорации Intel лидируют в этих исследованиях и в разработке компонентов на базе полупроводниковой фотоники.

Фотонная логика пока что не заменит полу­проводник­овой, но уже может применяться для передачи данных. Как между устройствами, так и между ядрами процессора.

Глядя на недавний анонс "железных" новинок от Apple, так и хочется сказать, что новые технологии словно тропическая зелень: ещё вчера был маленький чахлый побег, а сегодня уже мощная лиана, глубоко пустившая корни и крепко охватившая своими побегами рыночный ствол вычислительной техники.

Появление первых "маков" с интерфейсом Thunderbolt было воспринято с любопытством, но не более того. Также в своё время рынок смотрел на диковинный порт FireWire в ноутбуках Apple PowerBook 3G.

Последовавшее за этим включение Thunderbolt, совмещённого с Display Port, практически во всю вычислительную технику Apple заставило производителей периферии серьёзно задуматься о поддержке этой технологии. Благо новый контроллер, разработанный компанией Intel, одновременно поддерживает и "удар грома", и спецификацию USB 3.0. И если с последним интерфейсом всё ясно, то вот Thunderbolt полон загадок. Каких?

Ну, например, из серии "Что в имени тебе моём?". Ведь Thunderbolt - это рыночное наименование исследовательской технологии Intel Light Peak, где ключевым словом является light - свет. Те десять гигабит в секунду, которые сейчас предлагает потребителю Thunderbolt, передавая данные по медным проводам на расстояние до трёх метров, - воистину цветочки в сравнении с пятьюдесятью гигабитами в секунду, которые Light Peak обеспечивает по оптическому кабелю на сотню метров.

Появление оптического варианта Thunderbolt - дело недалёкого будущего. Будущего, в котором, наряду с привычной нам микроэлектроникой, помогать обрабатывать данные начнёт "царица света" - фотоника.

О том, как в Intel используют фотонику в технологии высокоскоростного обмена данными Silicon Photonics Link, можно прочесть в статье "Скачать за секунду: достижения кремниевой фотоники ".

Решения Intel на базе кремниевой фотоники обеспечат пятьдесят гигабит в секунду пропускной способности интерфейса компьютера с периферией

Пришло время посмотреть на компоненты систем на основе кремниевой фотоники детальнее. Систем, потому что решения Intel - далеко не единственные. И, что самое главное, сегодня это уже не просто лабораторные экзерсисы. Кремниевая фотоника обзавелась всеми необходимыми возможностями и вполне готова плодотворно сотрудничать с имеющимися микроэлектронными решениями.

Примером такого сотрудничества может служить герой нынешнего материала - проект компании IBM с метким названием SNIPER (Silicon Nano-Scale Integrated Photonic and Electronic Transceiver).

Фотоника. Кирпичики технологии

Способна ли фотоника полностью заменить электронику в микросхемотехнике? Наверное, нет. Распространение света основывается на законах оптики, что вносит существенные ограничения в разработку таких базовых компонентов, как транзисторы, конденсаторы и диоды. Нет, попытки разработать оптические аналоги транзистора предпринимались достаточно давно, да и сегодня они не прекращаются. Только вот составить конкуренцию отработанной технологии КМОП они не могут.

Схема фотонного транзистора была предложена ещё в восьмидесятых годах прошлого столетия

В чём фотоника действительно преуспевает, так это в реализации высокоскоростных каналов, связывающих компоненты цифровых схем. То есть в тех местах, где электроника начинает всё активнее буксовать. Увеличение степени интеграции компонентов микросхем сказывается на размерах соединяющих их металлических проводников. С переходом на двадцатидвухнанометровый технологический процесс производства КМОП инженеры столкнулись с проблемой переходных явлений в миниатюрных медных шинах. Явления эти способны легко привести к ошибкам в работе сложного вычислительного комплекса, плотно упакованного в кремниевый чип.

Использование фотоники в качестве коммуникационной среды микросхем позволяет технологам одновременно избавить новые чипы от влияния переходных процессов в медных проводниках и существенно снизить нагрев микросхемы. В отличие от непродуктивно превращающих свою энергию в тепло электронов, фотоны, продвигаясь по оптическому проводнику, совершенно не рассеивают тепло.

Итак, компромиссным решением является комбинация электроники и фотоники. За электроникой остаётся основа цифровой схемотехники, а фотоника берёт на себя роль универсальной проводящей среды.

Что же для такой среды нужно? В первую очередь источник фотонов - лазер. Далее - проводящая среда, по которой фотоны смогут распространяться внутри микросхем, - волноводы. Чтобы нули и единицы, сформированные электронными компонентами, превратились в световой поток, и для обратного преобразования потребуются модуляторы и демодуляторы, но, конечно же, не простые, а оптические.

Ну и, чтобы добиться высокой пропускной способности, необходимой каналам нынешних интегральных микросхем, потребуются мультиплексоры и демультиплексоры (тоже, конечно, оптические). Причём все эти компоненты необходимо реализовать на той же самой кремниевой базе, которая используется и для технологии КМОП.

Разработка этих "кирпичиков" - путь, которым шла кремниевая фотоника последние двадцать лет. За это время была предложена масса уникальных решений, которые и явились той самой "суммой технологий", позволяющей фотонике перейти на качественно новый уровень. Уровень интегрированных оптико-электронных схем.

Кремниевые лазеры

Вообще-то словосочетание "кремниевый лазер" - это оксюморон. Являясь так называемым непрямозонным полупроводником, кремний совершенно не способен излучать свет. Вот почему в оптоволоконных телекоммуникациях используются решения на основе других (прямозонных) полупроводников, например арсенида галлия. При этом кремний отлично подходит для создания волноводов и детектирования оптических сигналов в электрические.

Так в чём же проблема? Можно использовать внешний по отношению к кремниевой схеме лазер или же разработать гибридную схему на основе кремния и, например, того же арсенида галлия. Но ни то ни другое решение нельзя считать эффективным. В случае использования внешнего лазера (а в современных волоконно-оптических системах макроуровня так и делается) на микроуровне практически невозможно точно откалибровать луч по отношению к волноводу нанометровых размеров. Включение же арсенида галлия в технологический процесс производства чипов КМОП потерпело неудачу. Слишком разные условия для производства нужны этим двум полупроводникам.

Так что же, кремниевому лазеру никогда не увидеть (точнее, не испустить) свет? Конечно же, нет. Кремний можно заставить светить, если применить различные хитрости. Например, легировать его материалом, который будет испускать фотоны за кремний. Или так изменить структуру самого кремния, что он вынужден будет засветиться. Третий способ - применить комбинационное рассеяние света (его ещё называют рамановским), временно превращающее кремний в практически прямозонный полупроводник.

Один из способов заставить кремний светиться - создать пористую кремниевую структуру

Схема и микрофотография лазера на основе рамановского рассеяния

В настоящее время наибольших успехов учёные добились в области технологий легирования кремния. Самая известная реализация кремниевого лазера непрерывного действия на их основе - лазер, разработанный компанией Intel совместно с Калифорнийским университетом Санта-Барбары. Учёным удалось с помощью окиси "приклеить" прямозонный полупроводник фосфид индия к кремниевому волноводу. Толщина "клея" при этом составляет всего 25 атомов. Создавая разность потенциалов между кремнием и фосфидом индия (это называется "электрическая накачка"), они добились формирования фотонов, которые через "клей" проникают в кремниевый волновод.

Схема схема гибридного кремниевого лазера непрерывного действия

На основе такой схемы создаются варианты гибридного кремниевого лазера с разной длиной волны (инфракрасного диапазона, прозрачного для кремния), что позволяет реализовать многоканальную коммуникационную систему.

Кремниевые модуляторы

Испускаемый кремниевым лазером поток фотонов можно представить как несущую частоту, которую требуется модулировать двоичным сигналом.

Оптические модуляторы считались невозможными до тех пор, пока учёные не решили использовать явление интерференции света. В общем виде модулированный оптический сигнал можно получить путём интерференции опорного пучка света и пучка, прошедшего через материал, изменяющий показатель преломления под воздействием электрического тока (так называемый электрооптический эффект). К сожалению, кремний и здесь подкачал - его симметричная кристаллическая решётка не позволяет реализовать электрооптический эффект. На помощь вновь пришло легирование.

Учёные раздвоили кремниевый волновод и нарастили на одном из его плеч слой нитрида кремния, который растянул кристаллическую решётку кремния. Приложение к этому участку напряжения приводит к преломлению света в этом плече волновода. При этом в другом плече этот же поток распространяется без искажения.

Микрофотография участка плеча преломления света в модуляторе Маха-Цендера

Реализация всего модулятора Маха-Цендера и его варианты.

Объединение этих потоков на выходе приводит к их интерференции, при этом выходной поток будет модулироваться приложением напряжения к плечу волновода с нитридом кремния. Изобретать велосипед учёным не пришлось. Подобный эффект широко применяется в интерферометрах Маха-Цендера. Поэтому кремниевые модуляторы и демодуляторы назвали точно так же.

Кремниевые мультиплексоры

Множество модулированных световых потоков от множества лазеров с разной длиной волны может существенно повысить пропускную способность коммуникационного канала за счёт распараллеливания передачи данных. Но как это множество потоков объединить в один? Да ещё и таким образом, чтобы на выходе полученный суммарный поток снова можно было разделить. Здесь на помощь придут мультиплексоры. Оптические, естественно.

Идея оптического мультиплексора на основе массива волноводов (AWG)

Микрофотография AWG-мультиплексора

Оптический мультиплексор на основе каскада модуляторов Маха-Цендера

В настоящее время предложена технология микроминиатюрного мультиплексирования света путём его спектрального уплотнения (WDM - Wavelengths Division Multiplexing). Чаще всего для её реализации используют дифракционную структуру на основе массива волноводов и зеркал (AWG - Arrayed Waveguide Grating), в которой каждый пучок света движется по собственному волноводу, искривлённому в соответствии с его длиной волны. Смыкаясь, эти волноводы и дают результирующий спектрально-уплотнённый поток. Другим распространённым решением является использование каскада уже известных нам модулятров Маха-Цендера.

IBM SNIPER. Кремниевый терабит

Решения в области кремниевой фотоники, предложенные компанией Intel, направлены на продвижение фотонных технологий в области интерфейсов периферийных устройств. Ближайшей коммерческой перспективой является пятидесятигигабитный оптический вариант интерфейса Thunderbolt (возможно, к моменту промышленной реализации его назовут по-другому). В более отдалённой перспективе Intel рассматривает увеличение пропускной способности до двухсот гигабит в секунду. Сказать, что это быстро, значит не сказать ничего: например, содержимое диска DVD при такой скорости может быть передано за одну секунду.

Точно такую же цель поставила перед собой лаборатория IBM Research. Поставила и добилась! Правда, использовать свой терабит IBM планирует не в коммуникационных интерфейсах, а в высокоскоростных шинах, соединяющих ядра многоядерного процессора.

Межядерная коммуникация на основе кремниевой фотоники

Идея проекта SNIPER от IBM Research (синим цветом показана фотонная часть схемы)

Проект SNIPER является практической реализацией идеи нанофотоники, использующей рассмотренные выше "строительные блоки" для создания фотонной коммуникационной сети. Эта фотонная сеть интегрирована поверх многослойного "пирога" системы на чипе, включающем многопроцессорный модуль и модуль оперативной памяти. Имея выходы наружу, такая сеть обеспечивает подключение этой системы на чипе к высокоскоростной оптической шине данных, соединяющей процессор с периферией. Внутренняя же волноводная разводка обеспечивает маршрутизацию данных между ядрами процессорного модуля.

Шестиканальный фотонный модуль проекта SNIPER

В настоящее время проект SNIPER может похвастаться реализацией шестиканального модуля фотонного приёмо-передатчика, использующего гибридные кремниевые лазеры, модуляторы Маха-Цендера и мультиплексор на основе массива волноводов. Пропускная способность каждого канала этого приёмо-передатчика составляет двадцать гигабит в секунду. На подложке размером 25 квадратных миллиметров реализовано пятьдесят таких каналов, что обеспечивает тот самый терабит пропускной способности.

Фотонный чип проекта SNIPER, обеспечивающий терабитную пропускную способность

Что самое главное, SNIPER - уже не исследовательский проект. Библиотеки всех элементов фотоники для кремниевой литографии отработаны для производственного цикла. Как и методика их интеграции с КМОП-логикой системы на чипе.

Где в первую очередь будет применяться это решение? Конечно же, в суперкомпьютерных системах и датацентрах облачных вычислений. Там, где вычислительная мощность электронных схем больше всего нуждается в обмене данными со скоростью света.

Однако можно быть уверенным, что экспансия кремниевой фотоники в потребительскую вычислительную технику не за горами. Начнётся всё с интерфейсов подключения периферии, а там, глядишь, и шины для мультиядерных решений подтянутся, превратив скучный кремний внутри наших процессоров в сверкающий всеми цветами спектра магический кристалл.