Заземляющие устройства озу и пзу. Что такое ПЗУ? Масочные ПЗУ на основе матрицы биполярных транзисторов

ПОСТОЯННАЯ ПАМЯТЬ (ПЗУ)

Существует тип памяти, который хранит данные без электрического тока, именно постоянная память ROM (Read Only Memory), или иногда ее называют энергонезависимой памятью, применяемую для хранения системных и дополнительных программ, предназначенных для постоянного использования микропроцессором, которая не позволяет изменять или стирать информацию.

ПЗУ (постоянное запоминающее устройство) - микросхема на материнской плате, в которой находятся программы, данные, занесенные при изготовлении компьютера и используемые для внутреннего тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память. Совокупность этих микропрограмм называется BIOS (Basic Input-Output System) - базовая система ввода-вывода. В BIOS содержится программа настройки конфигурации компьютера (SETUP). Она позволяет установить некоторые характеристики устройств компьютера (тип видеоконтроллера, жестких дисков и дисководов для дискет, часто также режимы работы с оперативной памятью, запрос пароля при начальной загрузке).

Данные записываются в ПЗУ в процессе производства. Для этого изготавливается трафарет с определенным набором битов, который накладывается на фоточувствительный материал, а затем части поверхности вытравливаются.

Различают:

ППЗУ (программируемые ПЗУ) были разработаны в конце 70-х годов компания под названием Texas Instruments. Другими словами в условиях эксплуатации есть возможность программировать. Такие ПЗУ обычно содержат массив крошечных перемычек. В которой есть возможность, пережечь определенную перемычку, выбрав нужные строку и столбец, а затем приложить высокое напряжение к определенному выводу микросхемы.

EPROM (стираемое программируемое ПЗУ), позволяют при использование специального аппарата, программировать в условиях эксплуатации и стирать информацию. Для этого чип подвергают воздействию сильного ультрафиолетового света с определенной длиной волны, в течении 15 минут.

EEPROM (Электронно - перепрограммированные ПЗУ), также стираемое ППЗУ, но в отличие от ППЗУ они позволяют перепрограммировать путем приложения импульсов и не требуют специальных дополнительных устройств. Но работают в 10 раз медленнее с гораздо меньшей емкостью и цена дороже.

Флеш-память, стирается и записывается по блокам. Производится на печатных платах, имеет емкость до нескольких десятков мегабайт.

Устанавливаемые на системной плате ПК модули и кассеты ПЗУ имеют емкость, как правило, не превышающую 128 Кбайт. Быстродействие у постоянной памяти меньшее, чем у оперативной, поэтому для повышения производительности содержимое ПЗУ копируется в ОЗУ, и при работе непосредственно используется только эта копия, называемая также теневой памятью ПЗУ (Shadow ROM).

«В настоящее время в ПК используются «полупостоянные», перепрограммируемые запоминающие устройства -- флэш-память. Модули, или карты, флэш-памяти могут устанавливаться прямо в разъемы материнской платы и имеют следующие параметры: емкость до 512 Мбайт (в ПЗУ BIOS используются до 128 Кбайт), время обращения по считыванию 0,035 -- 0,2 мкс, время записи одного байта 2 -- 10 мкс. Флэш-память -- энергонезависимое запоминающее устройство. Примером такой памяти может служить память NVRAM -- Non Volatile RAM со скоростью записи 500 Кбайт/с. Обычно для перезаписи информации необходимо подать на специальный вход флэш-памяти напряжение программирования (12 В), что исключает возможность случайного стирания информации. Перепрограммирование флэш-памяти может выполняться непосредственно с гибкого диска или с клавиатуры ПК при наличии специального контроллера, либо с внешнего программатора, подключаемого к ПК. Флэш-память бывает весьма полезной как для создания весьма быстродействующих, компактных, альтернативных НМД запоминающих устройств -- «твердотельных дисков», так и для замены ПЗУ, хранящего программы BIOS, позволяя прямо с «дискеты» обновлять и заменять эти, программы на более новые версии при модернизации ПК» [Электронный ресурс] URL:http://library.tuit.uz/skanir_knigi/book/vich_sistemi/viches_sist_2.htm (Дата обращения 15.05.2013)..

Сравнительная характеристика ОЗУ и ПЗУ

Таблица 2 Сравнительная характеристика.

«Физически для построения запоминающего устройства типа RАМ используют микросхемы динамической и статической памяти, для которых сохранение бита информации означает сохранение электрического заряда (именно этим объясняется энергозависимость всей оперативной памяти, то есть потеря при выключении компьютера всей информации, хранимой в ней).

Оперативная память физически выполняется на элементах динамической RАМ, а для согласования работы сравнительно медленных устройств (в нашем случае динамической RАМ) со сравнительно быстрым микропроцессором используют функционально для этого предназначенную кэш-память, построенную из ячеек статической RАМ. Таким образом, в компьютерах присутствуют одновременно оба вида RАМ. Физически внешняя кэш-память также реализуется в виде микросхем на платах, которые вставляются в соответствующие слоты на материнской плате» Николаева В.А. Информатика и информационные технологии. [Электронный ресурс] URL: http://www.junior.ru/wwwexam/pamiat/pamiat4.htm (дата обращение: 15.05.2013).

ПЗУ - быстрая, энергонезависимая память, которая, предназначенная только для чтения. Информация заносится в нее один раз (обычно в заводских условиях) и сохраняется постоянно (при включенном и выключенном компьютере). В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере. Комплект программ, находящийся в ПЗУ образовывает базовую систему ввода/вывода BIOS (Basic Input Output System). BIOS (Basic Input Output System - базовая система ввода-вывода) - совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

В ПЗУ находятся:

Тестовые программы, проверяющие при каждом включении компьютера правильность работы его блоков;

Программы для управления основными периферийными устройствами - дисководом, монитором, клавиатурой;

Информация о том, где на диске расположена операционная система.

Типы ПЗУ:

ПЗУ с масочным программированием это память, в которую информация записана раз и навсегда в процессе изготовления полупроводниковых интегральных схем. Постоянные запоминающие устройства применяются только в тех случаях, когда речь идет о массовом производстве, т.к. изготовление масок для интегральных схем частного применения обходится весьма недешево.

ППЗУ (программируемое постоянное запоминающее устройство).

Программирование ПЗУ – это однократно выполняемая операция, т.е. информация, когда-то записанная в ППЗУ, впоследствии изменена быть не может.

СППЗУ (стираемое программируемое постоянное запоминающее устройство). При работе с ним, пользователь может запрограммировать его, а затем стереть записанную информацию.

ЭИПЗУ (электрически изменяемое постоянное запоминающее устройство). Его программирование и изменение осуществляются с помощью электрических средств. В отличии от СППЗУ для стирания информации, хранимой в ЭИПЗУ, не требуется специальных внешних устройств.

Наглядно ОЗУ и ПЗУ можно представить себе в виде массива ячеек, в которые записаны отдельные байты информации. Каждая ячейка имеет свой номер, причем нумерация начинается с нуля. Номер ячейки является адресом байта.

Центральный процессор при работе с ОЗУ должен указать адрес байта, который он желает прочитать из памяти или записать в память. Разумеется, из ПЗУ можно только читать данные. Прочитанные из ОЗУ или ПЗУ данные процессор записывает в свою внутреннюю память, устроенную аналогично ОЗУ, но работающую значительно быстрее и имеющую емкость не более десятков байт.

Процессор может обрабатывать только те данные, которые находятся в его внутренней памяти, в ОЗУ или в ПЗУ. Все эти виды устройства памяти называются устройствами внутренней памяти, они обычно располагаются непосредственно на материнской плате компьютера (внутренняя память процессора находится в самом процессоре).


Кэш-память. Обмен данными внутри процессора происходит намного быстрее, чем обмен данными между процессором и оперативной памятью. Поэтому, для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают так называемую сверхоперативную или кэш-память. Когда процессору нужны данные, он сначала обращается к кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Чем больше размер кэш-памяти, тем большая вероятность, что необходимые данные находятся там. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.

Различают кэш-память первого уровня (выполняется на одном кристалле с процессором и имеет объем порядка несколько десятков Кбайт), второго уровня (выполняется на отдельном кристалле, но в границах процессора, с объемом в сто и более Кбайт) и третьего уровня (выполняется на отдельных быстродействующих микросхемах с расположением на материнской плате и имеет объем один и больше Мбайт).

В процессе работы процессор обрабатывает данные, находящиеся в его регистрах, оперативной памяти и внешних портах процессора. Часть данных интерпретируется как собственно данные, часть данных - как адресные данные, а часть - как команды. Совокупность разнообразных команд, которые может выполнить процессор над данными, образовывает систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах и тем дольше средняя продолжительность выполнения команд.

В электронных устройствах одним из наиболее важных элементов, обеспечивающих работу всей системы считается память, которая делится на внутреннюю и внешнюю. Элементами внутренней памяти считают ОЗУ, ПЗУ и кеш процессора. Внешняя – это всевозможные накопители, которые подключаются к компьютеру из вне – жесткие диски, флешки, карты памяти и др.

Постоянное запоминающее устройство (ПЗУ) служит для хранения данных, изменение которых в процессе работы невозможно, оперативное запоминающее устройство (ОЗУ) для помещения в её ячейки информации от процессов, происходящих в текущий момент времени в системе, а кеш память используется для срочной обработки сигналов микропроцессором.

Что такое ПЗУ

ПЗУ или ROM (Read only memory – Только для чтения) – типичное устройство хранения неизменяемой информации, включенное в состав почти каждого компонента ПК и телефона и требующееся для запуска и работы всех элементов системы. Содержимое в ROM записано производителем аппаратного обеспечения и содержит директивы для предварительного тестирования и запуска устройства.

Свойствами ПЗУ являются независимость от питания, невозможность перезаписи и возможность хранить информацию длительные сроки. Информация, содержащаяся в ROM, вносится разработчиками однажды, и аппаратное обеспечение не допускает её стирания, хранится до окончания службы компьютера или телефона, или его поломки. Конструктивно ПЗУ защищены от повреждений при перепадах напряжения, поэтому нанести ущерб содержащейся информации могут только механические повреждения.

По архитектуре делятся на масочные и программируемые:

  • В масочных устройствах информация вносится с помощью типичного шаблона на финальном этапе изготовления. Содержащиеся данные не могут быть перезаписаны пользователем. Разделяющими компонентами выступают типичные pnp элементы транзисторов или диодов.
  • В программируемых ПЗУ (Programmable ROM) информация представлена в виде двумерной матрицы проводящих элементов, между которыми расположен pn переход полупроводникового элемента и металлическая перемычка. Программированием такой памяти происходит устранением или созданием перемычек посредством тока высокой амплитуды и продолжительности.

Основные функции

В блоки памяти ROM вносят информацию по управлению аппаратным обеспечением заданного устройства. ПЗУ включает в себя следующие подпрограммы:

  • Директиву старта и контроля за работой микропроцессора.
  • Программу проверяющую работоспособность и целостность всего аппаратного обеспечения, содержащегося в компьютере или телефоне.
  • Программу дающую начало работе системы и завершающее её.
  • Подпрограммы, управляющие периферийным оборудованием и модулями ввода/вывода.
  • Данные о адресе операционной системы на физическом накопителе.

Архитектура

Постоянные запоминающие устройства выполнены в виде двухмерного массива . Элементами массива являются наборы проводников, часть которых не затрагивается, прочие ячейки разрушаются. Проводящие элементы являются простейшими переключателями и формируют матрицу за счет поочередного соединения их к рядам и строкам.

Если проводник замкнут, он содержит логический ноль, разомкнут – логическую единицу. Таким образом в двухмерный массив физических элементов вносят данные в двоичном коде, которые считывает микропроцессор.

Разновидности

В зависимости от способа изготовления устройства ПЗУ делят на:

  • Обыкновенные , создаваемые фабричным способом. Данные в таком устройстве не изменяются.
  • Программируемые ПЗУ, допускающие изменение программы один раз.
  • Стираемое программируемое оборудование , позволяющее очищать данные с элементов и перезаписывать их, например, посредством ультрафиолета.
  • Электрически очищаемые перезаписываемые элементы, в которых допускается многократное изменение . Такой вид применяется в HDD, SSD, Flash и других накопителях. На такой же микросхеме записан BIOS на материнских платах.
  • Магнитные , в которых информация хранилась на намагниченных участках, чередующихся с не намагниченными. В них была возможна перезаписи.

Разница между RAM и ROM

Отличия между двумя видами аппаратного обеспечения, заключаются в её сохранности при отключении питания, скорости и возможности доступа к данным.

В оперативной памяти (Random access memory или RAM) информация содержится в последовательно расположенных ячейках к каждой из которых возможно получить доступ посредством программных интерфейсов . RAM содержит данные о выполняемых в текущий момент процессах в системе, таких как программы, игры, содержит значения переменных и списки данных в стеках и очередях. При отключении компьютера или телефона RAM память полностью очищается . По сравнению с ROM памятью она отличается большей скоростью доступа и потреблением энергии.

ROM память работает медленнее, и для своей работы потребляет меньше энергии. Главное отличие заключается в невозможности изменять входящие данные в ПЗУ, в то время как в ОЗУ информация меняется постоянно.

Основные положения.

Память в микропроцессорной системе выполняет функцию хранения данных. Различные типы памяти предназначены для хранения различных типов данных. Подробнее это будет рассмотрено ниже.

Информация в памяти хранится в ячейках, количество разрядов которых равно количеству разрядов шины данных процессора. Обычно оно кратно восьми. Это связано с тем, что байт является восьмиразрядной единицей измерения. Поэтому объём памяти чаще всего измеряется в байтах независимо от разрядности ячейки памяти.

Допустимое количество ячеек памяти определяется количеством разрядов шины адреса как 2N, где N - количество разрядов шины адреса.

Используются также следующие более крупные единицы объема памяти: килобайт - 210=1024 байта (обозначается Кбайт), мегабайт – 220=1 048 576 байт (обозначается Мбайт), гигабайт - 230 байт (обозначается Гбайт), терабайт - 240 (обозначается Тбайт). Например, если память имеет 65 536 ячеек, каждая из которых 16-разрядная, то говорят, что память имеет объем 128 Кбайт. Совокупность ячеек памяти называется обычно пространством памятисистемы.

Для подключения модуля памяти к системной магистрали используются блоки сопряжения, которые включают в себя дешифратор (селектор) адреса, схему обработки управляющих сигналов магистрали и буферы данных (рис. 8.1). Для подключения модуля памяти к системной магистрали используются блоки сопряжения, которые включают в себя дешифратор (селектор) адреса, схему обработки управляющих сигналов магистрали и буферы данных (рис. 2.18).

Обычно в составе системы имеется несколько модулей памяти, каждый из которых работает в своей области пространства памяти. Селектор адреса как раз и определяет, какая область адресов пространства памяти отведена данному модулю памяти. Схема управления вырабатывает в нужные моменты сигналы разрешения работы памяти (CS – Chip Select) и сигналы разрешения записи в память (WR — Write-Read). Буферы данных передают данные от памяти к магистрали или от магистрали к памяти. В пространстве памяти микропроцессорной системы обычно выделяются несколько особых областей, которые выполняют специальные функции.

Классификация модулей памяти.

Классификация памяти необходима для более чёткого понимания того, для чего та или иная память будет использоваться.

Прежде всего, память делится на две основные подгруппы: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ).

Постоянное запоминающее устройство (ПЗУ).

Постоянным запоминающим устройством называют энергонезависимую память, т.е. память, не зависящую от наличия напряжения питания на устройстве. В таком устройстве информация может храниться длительное время без подключения его к источнику питания.

Данный тип памяти предназначен для хранения информации, которая не должна быть уничтожена при пропадании питания на устройстве. К таким данным можно отнести программу для микроконтроллера, данные о настройке этой программы, различные файлы. К файлам могут относиться графические изображения, данные, снятые с датчиков и т.д.

Существует множество различных реализаций ПЗУ. В микроконтроллерах наибольшую популярность получили две технологии. Это – EEPROM (Electronically Erasable Programmable ROM – электрически стираемая программируемая энергонезависимая память) и flash (Flash Erase EEPROM).

EEPROM была разработана в 1979 году фирмой Intel. Эта память имеет возможность перепрограммирования при подключении её к стандартной шине процессора. Причём стирание любой ячейки памяти происходит автоматически при записи в неё новых данных. Т.о. в этом типе памяти существует возможность изменить информацию в одной ячейке без затрагивания соседних ячеек.

Flash память является дальнейшим развитием EEPROM. В ней используется несколько отличный от EEPROM тип ячейки-транзистора. И другая организация доступа к ячейкам памяти. В результате чего доступ к ячейкам стал быстрее. Но стирание в flash памяти производится только для определённого блока данных, либо для всей микросхемы в целом. Стереть один элемент в ней невозможно. А так как запись в этом типе микросхемы (для типа памяти NAND) производится поэлементным «И» текущего состояния ячейки с данными которые надо записать, то верные данные будут записаны в ячейку только в том случае, если в ней будут записаны только одни единицы. Установить в ячейке единицу можно только функцией стирания. Никакой записью данных этого сделать нельзя. Следовательно, для того, чтобы записать данные в одну ячейку памяти, надо скопировать в стороннюю память весь блок, который будет стёрт, стереть его. В памяти поменять значение нужной ячейки и уже изменённый блок записать обратно.

Как можно видеть работа с отдельными ячейками данных медленная из-за необходимости каждый раз копировать и стирать целый блок данных. Но работа сразу со всем блоком на много быстрее чем в EEPROM.

Т.о. во Flash имеет смысл хранить информацию, которая будет изменяться редко (или никогда). А в EEPROM можно записывать настройки программы, которые должны сохраниться после отключения устройства от питания.

Flash память бывает двух типов – это NOR и NAND. NOR (Not OR) имеет быстрый произвольный доступ к ячейкам памяти и возможность побайтовой записи. NAND (Not AND) позволяет производить быструю запись и стирание данных, но имеет несколько большее время произвольного доступа к данным по сравнению с NOR.

Исходя из особенностей структур памяти, NAND обычно используется для хранения информации, считываемой потоком, такой как видео, музыка и т.д. NOR же используется для хранения программы, благодаря высокой скорости чтения произвольного байта данных.

ПЗУ имеет относительно низкое быстродействие и не может быть использован для хранения информации, к которой нужен быстрый доступ, такой как переменные.

Память программы начального запускавсегда выполняется на ПЗУ. Именно с этой области процессор начинает работу после включения питания и после сброса его с помощью сигнала RESET. При наличии у микроконтроллера нескольких типов ПЗУ, зачастую существует выбор с какой из них стартовать программу. Для этого наружу выводится несколько ножек, комбинация сигналов на которых идентифицирует ту или иную ПЗУ.

Адресация в NAND.

Для примера работы с ПЗУ рассмотрим организацию памяти и обращение к ней на примере микросхемы памяти NAND.

Структура памяти NAND представлена на рис 8.2.

Память в микросхеме делится на блоки, которые в свою очередь делятся на страницы, состоящие из байт. Т.о. для полной адресации байта памяти требуется знать номер блока, номер страницы и сам адрес байта в этой странице.

Общая ёмкость памяти в этом случае равна произведению ёмкости страницы на количество страниц в блоке и на количество блоков в микросхеме памяти. Если у нас, как показано на рис 8.2, микросхема состоит из 2000 блоков, содержащих 128 страниц каждый. В странице содержится 8192 байта памяти. В итоге получаем: 8192*128*2000 = 2 Гбайта памяти. Обычно размер памяти указывают в битах. Т.е. размер рассматриваемой микросхемы составляет 16Гбит, что и будет указано у неё в документации.

Соответственно, для получения одного байта информации на выводе R/W, отвечающем за чтение запись, устанавливается сигнал, говорящий, что будет чтение. Отправляется команда запроса на чтение байта данных. Затем формируется пакет вида, как показано на рис 8.3.

В этом пакете А13-А0 – это адрес байта в странице, А20-А14 – это номер страницы, А32-А21 – это номер блока.

В ответ на этот запрос микросхема должна выдать запрошенный байт. При этом, если требуется считать несколько байт подряд, то достаточно просто продолжать считывать данные, не обновляя адрес. Микросхема автоматически увеличивает адрес на единицу при каждом чтении. Т.е. при использовании данной микросхемы выгодно читать данные сразу страницами (в нашем примере по 8192 байта).

Статьи к прочтению:

ПЗУ — Постоянное Запоминающее Устройство

Постоянное запоминающее устройство (ПЗУ ) - энергонезависимая память, используется для хранения массива неизменяемых данных.

Постоянные ЗУ предназначены для хранения информации ко­торая остается неизменной в течение всего времени работы устрой­ства. Эта информация не исчезает при снятии напряжения питания.

Поэтому в ПЗУ возможен только режим считывания инфор­мации, причем считывание не сопровождается ее разрушением.

Класс ПЗУ не однороден и, как отмечалось ранее, может быть разбит на несколько самостоятельных подклассов. Однако все эти подклассы используют один и тот же принцип представления ин­формации. Информация в ПЗУ представляется в виде наличия или отсутствия соединения между шинами адреса (ША) и данных. В этом смысле ЭЗЭ ПЗУ подобен ЭЗЭ динамического ОЗУ, в ко­тором конденсатор памяти Сп либо закорочен, либо исключен из схемы.

2. Историческая хронология развития ПЗУ. Технологии ПЗУ по принцепу записи\перезаписи его содержимого: ROM, PROM, EPROM, EEPROM, flashROM. Привести характеристику этих технологий и рисунки показывающии строение ячеек.

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики и BIOS в компьютерах, таблицы коэффициентов цифровых фильтров в сигнальных процессорах. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации можно построить на мультиплексорах. Схема такого постоянного запоминающего устройства приведена на рисунке 1.

Рисунок 1. Схема постоянного запоминающего устройства, построенная на мультиплексоре.

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 2.

Рисунок 2. Обозначение постоянного запоминающего устройства на принципиальных схемах.

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.

Рисунок 3. Схема многоразрядного ПЗУ.

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы - металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ . Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше - это использование кроме мультиплексора еще и демультиплексора. Такое решение позволяет превратить одномерную запоминающую структуру в многомерную и, тем самым, существенно сократить объем схемы дешифратора, необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:

Рисунок 4. Схема масочного постоянного запоминающего устройства.

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 ... A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведЈн при обсуждении ОЗУ). Чтение микросхемы производится сигналом RD.

Рисунок 5. Обозначение масочного постоянного запоминающего устройства на принципиальных схемах.

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах - программаторах. В этих микросхемах постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве микросхемы изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти логических единиц. В процессе программирования на выводы питания и выходы микросхемы подаЈтся повышенное питание. При этом, если на выход микросхемы подаЈтся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход микросхемы подать низкий уровень напряжения (присоединить к корпусу), то через перемычку будет протекать ток, который испарит эту перемычку и при последующем считывании информации из этой ячейки будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) и изображаются на принципиальных схемах как показано на рисунке 6. В качестве примера можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.

Рисунок 6. Обозначение программируемого постоянного запоминающего устройства на принципиальных схемах.

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:

Рисунок 7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием.

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния - диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании микросхемы на второй затвор, находящийся над плавающим затвором, подаЈтся высокое напряжение и в плавающий затвор за счет тунельного эффекта индуцируются заряды. После снятия программирующего напряжения на плавающем затворе индуцированный заряд остаЈтся и, следовательно, транзистор остаЈтся в проводящем состоянии. Заряд на плавающем затворе может храниться десятки лет.

Структурная схема постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственно вместо перемычки используется описанная выше ячейка. В репрограммируемых ПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы встраивается окошко из кварцевого стекла.

При облучении микросхемы, изолирующие свойства оксида кремния теряются и накопленный заряд из плавающего затвора стекает в объем полупроводника и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы колеблется в пределах 10 - 30 минут.

Количество циклов записи - стирания микросхем находится в диапазоне от 10 до 100 раз, после чего микросхема выходит из строя. Это связано с разрушающим воздействием ультрафиолетового излучения. В качестве примера таких микросхем можно назвать микросхемы 573 серии российского производства, микросхемы серий 27сXXX зарубежного производства. В этих микросхемах чаще всего хранятся программы BIOS универсальных компьютеров. Репрограммируемые ПЗУ изображаются на принципиальных схемах как показано на рисунке 8.

Рисунок 8. Обозначение репрограммируемого постоянного запоминающего устройства на принципиальных схемах.

Так так корпуса с кварцевым окошком очень дороги, а также малое количество циклов записи - стирания привели к поиску способов стирания информации из ППЗУ электрическим способом. На этом пути встретилось много трудностей, которые к настоящему времени практически решены. Сейчас достаточно широко распространены микросхемы с электрическим стиранием информации. В качестве запоминающей ячейки в них используются такие же ячейки как и в РПЗУ, но они стираются электрическим потенциалом, поэтому количество циклов записи - стирания для этих микросхем достигает 1000000 раз. Время стирания ячейки памяти в таких микросхемах уменьшается до 10 мс. Схема управления для таких микросхем получилась сложная, поэтому наметилось два направления развития этих микросхем:

2. FLASH -ПЗУ

Электрически стираемые ППЗУ дороже и меньше по объему, но зато позволяют перезаписывать каждую ячейку памяти отдельно. В результате эти микросхемы обладают максимальным количеством циклов записи - стирания. Область применения электрически стираемых ПЗУ - хранение данных, которые не должны стираться при выключении питания. К таким микросхемам относятся отечественные микросхемы 573РР3, 558РР и зарубежные микросхемы серии 28cXX. Электрически стираемые ПЗУ обозначаются на схемах как показано на рисунке 9.

Рисунок 9. Обозначение электрически стираемого постоянного запоминающего устройства на принципиальных схемах.

В последнее время наметилась тенденция уменьшения габаритов ЭСППЗУ за счет уменьшения количества внешних ножек микросхем. Для этого адрес и данные передаются в микросхему и из микросхемы через последовательный порт. При этом используются два вида последовательных портов - SPI порт и I2C порт (микросхемы 93сXX и 24cXX серий соответственно). Зарубежной серии 24cXX соответствует отечественная серия микросхем 558РРX.

FLASH - ПЗУ отличаются от ЭСППЗУ тем, что стирание производится не каждой ячейки отдельно, а всей микросхемы в целом или блока запоминающей матрицы этой микросхемы, как это делалось в РПЗУ.

Рисунок 10. Обозначение FLASH памяти на принципиальных схемах.

При обращении к постоянному запоминающему устройству сначала необходимо выставить адрес ячейки памяти на шине адреса, а затем произвести операцию чтения из микросхемы. Эта временная диаграмма приведена на рисунке 11.

Рисунок 11. Временная диаграмма чтения информации из ПЗУ.

На рисунке 11 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке RD - это сигнал чтения, A - сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние), D - выходная информация, считанная из выбранной ячейки ПЗУ.

· ROM - (англ. read-only memory , постоянное запоминающее устройство), масочное ПЗУ, изготавливается фабричным методом. В дальнейшем нет возможности изменить записанные данные.

· PROM - (англ. programmable read-only memory , программируемое ПЗУ (ППЗУ )) - ПЗУ , однократно «прошиваемое» пользователем.

· EPROM - (англ. erasable programmable read-only memory , перепрограммируемое/репрограммируемоеПЗУ (ПППЗУ /РПЗУ )). Например, содержимое микросхемы К537РФ1 стиралось при помощи ультрафиолетовой лампы. Для прохождения ультрафиолетовых лучей к кристаллу в корпусе микросхемы было предусмотрено окошко с кварцевым стеклом.

· EEPROM - (англ. electrically erasable programmable read-only memory , электрически стираемое перепрограммируемоеПЗУ ). Память такого типа может стираться и заполняться данными несколько десятков тысяч раз. Используется в твердотельных накопителях. Одной из разновидностей EEPROM является флеш-память (англ. flash memory ).

· flashROM - (англ. flash read-only memory ) - разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.